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Abstract. Self-similarity in binary quasiperiodic sequences generated by a projection method 
is shown to exist when and only when it is associated with quadratic irrational numben. and 
the explicit self-similarity transformation for an arbiVary quadratic number is o w e d .  The 
self-similarity vansformation is shown not to be reducible to the simplest form for a class of 
quadratic numbers. 

1. Introduction 

Quasiperiodic systems lack any translational symmetry yet they are not random. The 
properties of a quasiperiodic system are considered to be fundamentally different from 
two extremes, regular crystals and random systems, since the geometrical structure plays 
a pivotal role in determining them. For example, the Bloch theorem and the van Hove 
singularities in the density of states for regular crystals follow from the translational 
symmetry. In elucidating the physical properties of quasiperiodic crystals, it is crucial 
to have clear knowledge of their geometrical stmcture and symmetry [ 1 4 .  Even for one- 
dimensional chains, however, there are only a few systems whose geometrical structure 
(self-similarity) is known well, despite extensive work over the past several years [7]. 
Among them are the Fibonacci chain and its relatives 131. 

In this paper we consider quasiperiodic sequences of two components produced by a 
projection method with one parameter a! and study the self-similarity of the sequences. In 
section 2 we prove that the necessary and sufficient conditions for a sequence to be self- 
similar is that a! is a quadratic number. It is rather trivial to show that this condition is 
necessary for a sequence to be self-similar. Thus the main point of the discussion is to prove 
that the condition is also sufficient for self-similarity. To this end, we obtain the explicit self- 
similarity transformation of the quasiperiodic sequence for an arbitrary quadratic number, 
exploiting the continued-fraction expansion of an irrational number which has been utilized 
in the discussion of quasiperiodic systems [1,8,9]. We discuss the reduction of the self- 
similarity transformation in section 3 and show that the transformation cannot be reduced to 
its simplest form for a class of quadratic numbers. To illustrate an example of a non-self- 
similar quasi periodic sequence, we briefly discuss in section 4 the band structure of a tight 
binding electron on a one-dimensional chain. Concluding remarks are made in section 5 .  

8 Research fellow of the Alexander yon Humboldt Foundation. 
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2. The self-similarity transformation 

We consider a quasiperiodic sequence of 0 and 1 given by 
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F ( 4  = IFm@)} (n > 1) (1) 

with 

&(a) = [(n + 1)aI - [nal (2 
where [x] denotes the integer part of x, n = 1,2,3,. . . and a is a real parameter in (0 , l )  
characterizing the sequence. It should be emphasized that the following argument holds for 
any system isomorphic to F(a). When a is a (reduced) rational number a / b  (a 4 b) ,  then 
the sequence is periodic, and we denote the periodic unit by i7(a/b)  which consists of n l  
s and b - a Os. 

We define an inflation rule for sequence (1) as two simultaneous transformations for 
two units of 0 and 1: 

S(0, 1) -+ S'(0.1) 

T(0, 1) -+ T'(0,l) 
(3) 

where S(0, 1) and T(0, I), units consisting of k,cOs, &ls and krOs, &ls, respectively, cover 
the entire F(a). The numbers of Os and 1s in S'(0, l), k,:, li. and those in T'(0, l), ki, I:. 
are assumed to satisfy k,; + 1: > ks + I ,  and ki + 1; p kt +I,. When F(a)  is invariant under 
transformation (3), the sequence is called selfsimilar. For a self-similar sequence F(a), the 
ratio of the numbers of Os and 1s in the system must be unchanged when the transformation 
is applied, and hence a must be a quadratic number determined by 

L(k.7 + b)(# + 1:) - (kt + &)(k,i + f,:)laz 
+ [(kt + lr)( - (ki + li)h + (k,: + 1:)lt - (kr + l.s)L;Ic~ + Z.Ji - Zrl: = 0. (4) 

Thus, it is a rather trivial statement that parameter a of a self-similar quasiperiodic chain 
must be a quadratic number. Taking the contraposition, we can conclude that F(a) for a 
other than quadratic numbers does not have any self-similarity in the sense of equation (3). 
In the following, we show that the converse is also true, namely that the sequence F ( a )  for 
any quadratic number has self-similarity. 

In order to find explicitly the self-similarity transformation of F(a) for an arbitrary 
quadratic number a, we use the continued-fraction expansion of a, which is known to be 
periodic beyond a certain level [IOlt. We write it as 

1 1  1 
a =  --.:. 

ki+ k2+ k,-l + a  
1 1  1 a = -- ,.. . 

hi+ h;?+ h,-i + 0 '  

t Real numbers un be classified into algebraic and mscendental numbers, and the former me further classified 
according to the degree of the algebraic equation which they satisfy. A rational number is thus considered to 
be an algebraic number of degree one. An dgebnic number of degree two is called a quadratic number, and is 
classified as a reduced or a non-reduced number: B quadratic number Is d l e d  reduced when it is larger than unity 
and its conjugate is in (-1.0); when a quadratic number is in (0,l) and its conjugate is not in (0.1) we call it a 
quasi-reduced quadratic number. 
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The periodic parte is the inverse of a reduced quadratic number (0 E (0, 1) and its conjugate e < -1). We denote the ith approximant of a! by pi/qi. 

and the ith approximant of 6' by ri/si,  

ri 1 1 1 
si hl+hz+"'hj-l 

i = 2, ..., m. - - 

(p1 /q1  = ~ I / S I  = O/l). Since 8 is the stable fixed point of a modular transformation 

with p s  - qr = 1 (we choose this parity since, when m is odd, p = r,, q = r , - ] ,  r = 
s,,s = s,-I and, when m is even, p = rmsm-l + r,,-l,q = rm(s, + r,-I),r = 
S,-I (s, +rm-l) ,  s = s i  +rmsm-l), a! is the stable fixed point of a modular transformation, 

2 

Here, 

and A B  - CD = p s  - qr  = 1 is shown to hold. In fact A ,  E ,  C and D are written as 

A = pn(sqn-l - r q d  + pn-l(qqo-l - pq.) 

B = p.(rp. - SP,-I) + P~-I(PP. - qpn-d  

C = q.(sqn-l - rq,) +qn-t(qq.-l - pq.) 

D = q.(rp. - SP.-.I) + qn-t(ppn - qpn-l).  

(12) 

(13) 

The flow of the fixed point iteration 

E' = S(a!) (14) 

can be easily analysed. We find 

(1) The complex conjugate ti of a! is the unstable fixed point of equation (14), and it is 
the stable fixed point of 6' = (-DZ + B)/(Cti - A ) .  

(2) The convergence region r. of equation (14) is given by To = (-CO, 5) when C > 0 
and n is odd or when C < 0 and n is even and r. = (6, CO) when C > 0 and n is even or 
when C < 0 and n is odd. 
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We consider a series of transformtions 
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which can be shown to converge to 01 monotonically. Using the fact that pn  = 
' LIPA + ~ ~ - 2 ,  qn = kn-lqn-] + qn-2 and pnqn-I - = (-U", we can prove 
that pL-2/qA-2, = (pn - p.-i)/(q. - qn-d9 pn/qn and pn-1/qn-~ form a Farey triplett, 
which are all in the converging region, re. Therefore, the periodic unit i l ( p , / q , )  for 
F(p,/q,) is obtained by putting i7(pn-l/qn-l) and i7(pA-2/qA-2) side by side: 

when n is even 

(16) 
when n is odd. 

4.-1 

When ph-2/qA-2 = 1 for even n or-pn-l/qn-l = 1 for odd n, equation (16) must be 
considered as 

when n is even 

when n is odd. 
40-2 

Note, however, that this happens only when n = 2, kl = 2 or n = 4, kl = k3 = 1 for even 
n or n = 3, kl = 1 for odd n. Since 

(20) 

are also a Farey triplet, 17[6(pn/q,)] is given in a similar manner to equation (16) 
with n[S(p.-i/q,-1)] and 17[S(p~-2/q~-2)I, which in turn are written as a product of 
l7(pA-]/q,,-,) and II(pA-I/qL-2) in the order determined by p , q . r , s ,  i.e. 8. Therefore, 
for i = 1,2,3,. . . , i7[8(')(pn/q,)] is obtained from i7[8('-"(p,,/qn)] by the inflation 

pnr f h - 1  P 
8 ( Z l = q n r + q n - l p  

When pA-2/qA-2 = 1 for even n or pn-l/qn-] = 1 for odd n, we have to take the 
transformation for n(1) in equation (21) as 

n(1)  + "1 (22) 

where i?(. . .) denotes the same sequence as n(. . .) except for 10 at the right end being 
changed to 01. It should be noted that the same modification applies in the following. 
As the inflation (21) holds at the fixed point of the modular transformation S(ar), it is the 
self-similarity transformation of F ( q )  for the quadratic number a satisfying U = S(a). 

7 The Fxey series of order m is the ascending series of irreducible fractions in (0,I) whose denominators do not 
exceed in (0 = 011 and 1 = Ill). A Farey triplet is a set of three successive terms in a Faey series. 
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3. Reduction of the self-similarity transformation 

We can define pi-z and qi-z by 

and thus II(p:-2/qA-z) can be written in terms of i7(pn-lTqn-lj and n(p:-z/qi-2).  
Consequently, if pi-z/q:-z is in re, the inflation (21) can be reducible to 

we can reduce the inflation rule when pn-3/q,,-3 is in re. Since ra for quasi-reduced 
quadratic numbers [lo] contains (0,l). the inflation rule can be reducible to 

n(o) = o -+ n[s(o)i 

n(1) = 1 -+ l=I[8(1)]. 
(27) 

An alternative proof for this inflation rule is given ekewhere [ll].  
For non-quasi-reduced quadratic numbers, the reduction to the rule (27) is not possible 

because their conjugate is in (0,l) and the reduction cannot go beyond the converging region 
ru given in section 2. As an illustration, let us consider 

1 1  e=-- 
31 2+2+8 1+4+0 

1 6 - 2 3  1 1 - -- - a =  

thus 
13a - 8 

31a - 19' 
S(a) = 

8 + 4  
8 + 5  Y ( e )  = - 

The inflation rule corresponding to equation (21) is 

r I ( l /Z )  -+ rI[8(1/2)] = rI(3/7) 

n ( i /3 )  + n[s ( i / s ) l=  n( i i /26) .  

Since n(1/,3) = I7(0/1)n(l/Z), this is reducible to 

n(0) = 0 + n[$(O)] = n(8/19) = 0101001010100101010 
(31) 

n(1/2) = io + n [ s ( p ) i  = n(3/7) = oiotoio. 
~ ~ 

This is the simplest (reduced) inflation rule for F[(16 - 2&)/31]. 
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4. Non-self-similar sequences 

In order to see the properties of non-self-similar sequences, we consider as an example the 
band structure of a tight binding electron on a one-dimensional quasiperiodic chain where 
the site energy takes two different values EO and €1 in the sequence of equation (1). It is 
known that the energy band is determined by the convergence of the product of two transfer 
matrices 

T Odngaki and M Kaneko 

E - E O  -1 E - E  

Here, E is the energy of the electron and the transfer energy is chosen as the scale of energy. 
We write the continued fraction expansion of 01 as 

1 1  1 
01 = 

ki+ k z f  kn-i+ " 

and define the nth approximant to (Y by (p1/q1 = 0/1) 

Pn 1 1 1 

qn 
- = _- 

k i f  k z f  .'. k,-i ' 

(33) 

(34) 

is the Chebyshev polynomial of the second kind [12]. Here, we have used the following 
generalized hyperinflation rule [6]: when n is even 
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and when n is odd 

(39) 
kn 

& - I .  

The allowed energy band for the chain is determined by [Ani < 2. We show in figure 1 
the allowed energy region for 

2 - 1  1 1 1 
e * + ]  1+3+5+”‘  
-= --- 

a transcendental number, when €0 = 0 and €1 = 1. It is clear that there is no self-similarity 
in the band structure. For the nth approximant crystal there are q,, bands and, for the 
(n + 1)st approximant there are &+I = k,q, + q.-, bands: (hat is, besides each of q,, bands 
in the nth approximant breaks up into k, bands, qn-, new bands appear. Thus, when one 
moves on to the higher order approximant, more bands appear than Azbel’ [ 11 has predicted. 

-2 
n l 2 3 4 5  
L 1 3 5 7  

Figure 1. The allowed energy regions for a tight binding electron in approximant chains. Two 
site energies 0 and I me placed in the order of the approximant to F[@ - I)/(e2 i- I ) ] .  Pm 
each approximant pnIq,,. the allowed region consists of yo bands. For pn+i/yn+l. each band 
for p.ly, splits into k. bands and. in addition to these. qn-, new bands appear. The numben 
in the figure denote the number of bands in each bunch of the allowed region. 

5. Concluding remarks 

We have shown in this paper that there is a clear distinction between the quadratic 
algebraic numbers and other irrational numbers in self-similarity of one-parameter binary 
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quasiperiodic chains and obtained the explicit algorithm to find the self-similarity 
transformation for a given quadratic number. Self-similarity in the form of equation (3) 
does not exist in the sequence except for quadratic irrational numbers. Self-similarity 
based on the inflation rule (27) exists only for the sequence corresponding to quasi- 
reduced quadratic numbers. For non-quasi-reduced quadratic numbers, the self-similarity 
transformation cannot be reduced to rule (27). 

When IY is a rational numbertan algebraic number of degree one, there is a translational 
symmetry and in turn the Block or the Floquet theorem holds. Therefore, it is an intriguing 
problem to find if a general theorem exists in the properties of self-similar chains which 
corresponds to algebraic numbers of degree two and to investigate symmetries of quasi- 
periodic chains for other irrationals. In this connection, it should be noted that there 
has been an argument that the stability conditions for quasicrystals in two dimensions 
could be satisfied only for quadratic irrationalities 1131. As is well known [6,14], many 
physical systems can be described in terms of unimodular transfer matrices, including an 
electric circuit and optical layers. Therefore, it will be feasible to test the present results by 
experiments. 
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